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Abstract. Boundary layer theory is applied to the micro-magnetic equations describing the 
distribution of magnetisation in small spherical ferromagnetic particles. A solution cor- 
responding to a single domain wall naturally emerges. The spatial variation of magnetisa- 
tion so obtained compares well with previous numerical treatments. 

1. Introduction 

The modern theory of ferromagnetic domain structure considers a magnetised body to 
be subdivided into domains; in each domain the magnetisation is assumed to be 
spatially uniform and the domains separated by domain walls. It is assumed that these 
walls have an energy per unit area arising from exchange and magnetic anisotropy 
forces. The equilibrium domain structure is the one that minimises the total energy, 
which has contributions from the wall energy, magneto-anisotropy energy and the 
magnetostatic energy. As Fuller Brown has emphasised, this procedure for obtaining 
possible domains structures is very dependent on the ingenuity of the proposer of the 
structure. Even so it is an extremely valuable way for studying ferromagnetic materials 
and has been used extensively (see for example Craik and Tebble (1970)). By far the 
most difficult contribution to evaluate is the magnetostatic energy, and this has meant 
that the domain structures that have been studied have been chosen such that this 
evaluation is relatively straightforward. 

An entirely different but more fundamental approach comes under the heading of 
micro-magnetics. Here the total energy is expressed as an integral over the whole body 
of a function of the local direction of magnetisation. (The magnitude is usually assumed 
constant.) The extrema1 of the energy with regard to arbitrary variations of this 
function gives rise to Euler equations for this function in the form of nonlinear 
differential integral equations. In this method too, the magnetostatic Contribution is the 
most difficult to include, and the majority of previous analytic methods have been based 
on particular classes of solution where the magnetostatic contribution is relatively 
straightforward. For example, the magnetisation is assumed to ‘curl’ so as to avoid the 
occurrence of a magnetostatic energy contribution. A notable exception is the work of 
Eisenstein and Aharoni (1976). These authors have used a variational method to study 
the micro-magnetic structure in a spherical particle. They treat the magnetostatic 
energy contribution to the same approximation as the other energy contributions. 
However, the energy of their assumed class of trial functions for the distribution is 
always greater than that obtained numerically by Stapper (1968). Hence, in the spirit of 
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a variational calculation, the magnetic distribution discussed by Stapper must be 
preferred and it is the one that is discussed in this paper. For a review of the subject of 
micro-magnetics, see for example Brown (1 963). 

Both Brown and Labonte (1965) and Stapper (1969) have solved the full micro- 
magnetic equations numerically. It is apparent from these numerical results that for 
particles which are not too small, the magnetisation is almost uniform over a substantial 
part of the volume of the body, though not necessarily in the direction of easy 
magnetisation. The rapid change in magnetisation that does take place is over a 
relatively small region. If one identifies this latter region as a domain wall, then these 
numerical results illustrate how the micro-magnetic approach can lead to a macroscopic 
domain theory, as outlined in the first paragraph of this Introduction. 

The purpose of this paper is to study analytically the problem solved numerically by 
Stapper. The analysis is based on the observation, mentioned above, that if there are 
regions where the magnetisation changes rapidly in direction (domain walls) sur- 
rounded by regions where the changes are very much less (domains), then the wall 
regions may be treated as boundary layers. In other branches of physics the boundary 
layer concept is well accepted, but to the author’s knowledge the idea of using such a 
concept to treat the micro-magnetic equations is new. The particular problem studied 
by Stapper is that of a spherical particle in which it is assumed that the direction of 
magnetisation always remains parallel to a plane, but changes as a function of the 
perpendicular distance from this plane. This assumption reduces the micro-magnetic 
equation to a nonlinear integro-differential equation in one variable. Though this 
assumption may be too restrictive to apply to the real situation, it is sufficiently general 
to allow one to study the possibility of treating domain walls as boundary layers. A 
significant advantage of the present analytic treatment over Stapper’s numerical one is 
that the scaling of the changes with respect to the various magnetic parameters is given 
explicitly. 

2. Basic micro-magnetic equations 

We consider a spherical particle of radius U in which the magnetisation M at any point is 
given by 

M = M,Jcos 4, sin 4, 0 )  

where 4 is a function of one variable only, namely z .  MO is an absolute constant. 

total magnetic anisotropy energy is then 
The magnetic anisotropy is uniaxial with the easy direction in the x direction. The 

where K is the anisotropy constant. The exchange energy is given by 

+a 

Eo = a7r (a  - z ’)( 2) * dz, 

where cy is the exchange energy current. The magnetostatic contribution is by far the 
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most complicated, and as shown in appendix 1 may be written in the form 
+ U  + U  

E ,  = M i  I-, dz I-, dz‘ H ( z ,  z ’ )  cos[4 ( z )  - 4(z’)]. 

Magnetostrictive effects are neglected. 
The micro-magnetic equation is obtained by demanding that the total energy, 

ET = Ea + Eo + E,, is an extremum with respect to arbitrary variations of 4. This leads 
to the Euler equation, which in dimensional form is 

where y = z / a ,  77 = M:/K,  E = 6 / a  and 6 = (a/K)’/’. Expressions for 

m y ,  y ’ )=H(y ,  y‘,l[a.rr(l-y2)1, 

are given in appendix 1. It may be noted that a solution of (2.2) is 
corresponds to the uniformly magnetised state. 

= 0; this 

3. Boundary layer theory 

The boundary layer theory to be presented in this section is based on the assumption 
that F << 1. In the usual theory of domain walls in which magnetostatic effects are 
neglected (77 = 0), one finds that 6 is a measure of the width of such walls (see for 
example Craik and Tebble (1970)). Thus the condition E(=S/a )<<  1 implies that the 
theory is limited to particles whose size is significantly larger than the intrinsic width of a 
domain wall. We further restrict our attention to the case where only one wall is 
present, though the analysis may readily be extended. This wall is centred about y = 0 
as this position obviously minimises the magnetostatic energy. We further impose the 
condition that 4 -+ 0 as y -+ -1 and 4 -+ T as y + +1. This configuration coincides with 
one of those studied numerically by Stapper. 

To apply boundary layer theory to (2.2), we treat E as small and follow standard 
treatments by making inner and outer expansions (see for example Nayfeh (1973, ch 
6)). For the inner expansion about y = 0, where we assume that the main variation of 4 
occurs, we introduce the new coordinate [ = y / e  and consider the limit E -+ 0, with [ 
remaining finite. Equation (2.2) reduces to 

+1 
-- d24 sin 4 cos 4 - 77 sin[d([) - 4(y’)]H(O, y’ )  dy’. d[’ - 

It is essential to retain the variable y’  under the integral, and in this respect the present 
treatment differs from boundary layer theory applied to differential equations. 
Writing 4 = 7r/2 + i+b and assuming the symmetry $([) = -$(-[), and noting that 
H ( 0 ,  y )  = g(O, -y) ,  the above equation reduces to 

d’$/d[’ = .-sin $ cos I) + A  sin 4, (3.1) 

where 
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This equation may be studied using phase-plane arguments (Minorsky 1 9 4 7 )  or 
integrated in terms of elliptic functions. Either way one finds that periodic solutions for 
$ exist, but for one choice of the integration constants the period becomes infinite. For 
this case 

(d$/d[)*= (COS $ - A ) * ,  

which may be integrated to give, for lAl< 1, 

1 -A 
$ = 2 tan-’[ (---) 1’2 tanh 81, 

1 + A  (3 .3 )  

2 I / %  where t9 = $[[(1 - A  )] 
less energy than the periodic solutions, and hence is the most probable state. 

This solution corresponds to a solitary pulse or soliton. It has 

For 6 --$ ~ O G ,  c& -+ *(n-/2--sin-’ A ) .  

To complete the solution, one must satisfy the consistency condition (3 .2)  which, using 
the form for $ given by (3 .3 ) ,  takes the form 

-’ r f ( 0 ,  y )  dy 
A =  (3.4) 

tl - where p = j-l H ( 0 ,  y )  dy. The integrals are evaluated in appendix 2, and it is found that 
for small E 

For small A this may be solved to give 

A = 2 q ~  In ~ / ( 1 + 4 r r q / 3 ) .  (3 .5)  

Though in the above analysis we have treated A as being independent of E (at least 
as existing in the limit as E + 0), and have now found that A = E  I n  E ,  this is not 
inconsistent since the terms we have neglected in the limiting procedure are at least of 
order E .  

To complete the solution one now considers an outer expansion appropriate to finite 
values of y .  We have seen that the inner expansion leads to an assymptotic value of 
$ = f (7r/2) -sin-’ A ) ,  and since A = E In E and E << 1 we expect the value of $ in the 
outer region to be of order *7r /2 .  Thus in this region we write $ = *(7r/2 +8$)  and 
linez;ise the equation f x  $. However, in evaluating the integral that appears in (2 .2 ) ,  it 
is necessary to consider (1, for all y. Thus we divide the integral into inner and outer 
regions; in the inner region of width 2y”  we replace 4 by the expression given by (3 .3 ) ,  
and in the outer region we use the linearised form mentioned above. In this way we 
obtain the following linearised equation for 8$, for y > y o :  
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We further assume that S$ is slowly varying for y > yo, and hence we may take S$ 
outside the integral. Then by considering the limit E --* 0 (yo  = E )  in all terms except the 
last term on the right-hand side of the above equation, we find 

y o  

[ l + - r l A ( y ) l ~ 4 4 ~ ) = ~ 1  g ( y ,  ~’)cos[llr(y’)ldy‘=-S(y), 
- y o  

where 

The limiting procedure used above is seen to be consistent, since the terms neglected 
will only change the coefficient of S$ by order E compared to unity, whereas proceeding 
to the limit E = 0 in the term now denoted by S ( y )  would imply S$ = 0. We may write, 
since cos + A for y > E ,  

but in the last integral we may proceed to the limit E = 0 to give 

where 

(3.7) 

(3.8) 

In appendix 2 it is shown that K(y)=47r/3 and A ( 0 ) = 4 ~ / 3 .  Further using the 
definition of A as given by (3.2), we see that if we extrapolate the above form for S+(y) 
to y = 0 that 

We may now obtain a solution for $ for all y by forming a composite solution of the 
solutions obtained in the inner and outer regions. However, since for ~ ( = Y / E ) - ,  CO the 
inner solution is such that $ + ~ / 2 - s i n - l  A, whilst for y + 0 the outer solution 
$+ 7r/2-A, which gives continuity at least for small A, it is best for arbitrary A to 
consider a composite solution for the direction cosine cos $. 

Thus we write (y  = t / a )  

(1 - A 2 )  S(Y) cos cc, = 
A + cosh[(l - A2)1’2y/~ 1- [l f q A  (y )I’ (3.9) 

and take this to be valid for all y 3 0. It is shown in appendix 2, that, to sufficient 
accuracy, we may write 

S ( y )  = 2877 COS-’ (A)H(y + E, 0), 

and 
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The above solution has all the qualitative features of the numerical solution 
obtained by Stapper. In particular, a region exists (domain wall) where the magnetisa- 
tion changes rapidly. From the above it is seen that the characteristic length of this 
variation is 8/(1 Outside this region the magnetisation direction slowly 
relaxes to the magnetic easy directions (51, = * r / 2 ) ,  The characteristic length associated 
with this variation being a, the radius of the particle. The maximum excursion away 
from the easy direction in this region is given by cos 51, = A .  For the parameters 
considered by Stapper (7 = 0.47, F = 0.065), equation (3.5) gives A = -0.8, w!iich 
corresponds to a 10’ excursion. This seems to be in excellent agreement with the value 
obtained by Stapper, who unfortunately only presents his results graphically. 

4. Conclusions 

Boundary layer theory has been applied to the micro-magnetic equations describing the 
distribution of magnetisation in a spherical ferromagnetic particle. An explicit analytic 
solution has been obtained showing how this distribution depends on the magnetic 
properties and the size of the particle. In agreement with earlier numerical solutions, 
the analytic one clearly shows the existence of skirts, where the magnetisation direction 
slowly relaxes to the magnetic easy directions. 

The method is readily extended to the case where there is more than one wall per 
particle. To the same approximation as used in this paper, each domain wall may be 
treated separately; the only difference arises in the evaluation of A. In the consistency 
condition for A of the form (3.2), R(0, y )  must be replaced by R(yc, y )  where y c  is the 
position of the centre of the domain wall. The equation for $ is still of the form (3.1), 
but now with 6 = (y  - y c ) / e .  The calculation 851, proceeds as in this paper, but now 
S ( y ) c c H ( y  - y c + e ,  0). With contributions to S ( y )  coming from each domain wall 
region, this is again in qualitative agreement with the solutions shown graphically in 
Stapper (1968). 

Appendix 1 

By introducing the idea of magnetic poles (see for example Rhodes et a1 (1962)), it may 
be seen that the magnetostatic energy of the spherical particle considered in the text 
may be written as the sum of terms, each term corresponding to the magnetostatic 
energy of two discs with pole distributions proportional to cos q5 sin 8. However, from 
the axial symmetry this energy is proportional to 

sin 0 sin 0‘(cos q5 cos 4’+sin C$ sin d ’ ) H ( z ,  2 ‘ ) .  

Here 8, C$ are the angles in a spherical polar coordinate system such that the rotation of 
the magnetisation vector is due to a change of 4, where 8’ is the value of 8 at z = 2 ’ .  Here 
H ( z ,  2’) is the energy of the discs when their magnetisation vectors are parallel. 
Remembering that an element of surface is just dz/sin 8, the total magnetostatic energy 
of the spherical particle is as given by (2.1). From elementary magnetostatics we may 
write 
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where r, r' are the radii of the discs. For spherical particles we have r 2  = a 2  - 2'. This 
may be integrated once to give 

cos 8 d8  
[r2+ (r')'- 2rr' cos 8 + (2 - z ' ) ~ ] ~ / ~ '  

2- 

H = rr'7r 

and integrated again to give 

H = 27r(rr')"2[(2b - I / ~ ) K ( I / ~ ) - ~ ~ E ( I / ~ ) I  

where K and E are the complete elliptic integrals and 

In particular we have ( t / a  = y )  

2 1 / 2  where bo = [1+ (1 - y )] / 2 ( 1 -  y2)l/ '  and 

F ( b ) = ( 2 b  - l / b ) K ( l / b ) - 2 b E ( l / b ) .  

For y +. 1 we find R ( y ,  0) =&~J2(1- y2)'l4 and for y + O  g ( y ,  0) = 2 ln(8/y). Also 
a(0, y )  

A different representation for H may be obtained as follows. First let z / a  = cos (6, 
z ' / a  = cos (6' and r = a sin 4 in which case 

2 l n (8 /y )  for y +. 0. 

a7r COS 7 d 7  lo2= (1 --cos y)1/29 
H =-sin (6 sin (6' 

JZ 

where cos y = cos (6 cos (6' -sin (6 sin (6' cos 7. Then, using the properties of Legendre 
functions, namely 

( n  -m)! 
m=' l  ( n  + m)! P,(cos y )  =Pn(cos (6)P,(cos (6')+2 1 - PI:(cos (6)Pn"(cos (6') cos(m7) 

and 

P: (cos (6) = sin ( 6 ~ ;  (cos (6 1, 

where the prime on the PL denotes differentiation with respect to the argument, we find 

OD PI, (cos (6)PL (cos 4') 
~ ( z ,  2') = 2a7r2 sin2 (6 sin2 (6' 1 

n = l  n ( n  + 1) 

Thus 
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Appendix 2 

To evaluate the quantity A given by (3.4) it is necessary to consider the following 
integral: 

Since 24 = (1 -A’)’”~/E and E << 1, the major contribution to the integral comes from 
small y. Thus we may replace n(0, y )  by its limit as y + 0, which is given in appendix 1. 
Then to lowest significant order 

+O(E2) 
4~ In E O0 dx I - -  

(1 - ~ 2 ) 1 / 2  Jo A + cosh x 

- - ( 4 ~  In E cos-’A)/(1-A2). 

The remaining integrations required in the text are best performed by using the 
Legendre representation of E?. In particular, consider A ( y )  defined by (3 .5 ) .  With the 
representation of given in appendix 1 we have 

Using the properties of Legendre functions, the integrals may be evaluated to give 

In particular A (0) = 4 ~ / 3 .  In a similar manner it may be shown that K ( y )  = 4 ~ / 3 .  
The variation of A ( y )  with y is smooth, and thus it is sufficient for most purposes to 

obtain a simple analytic approximation. For y = 1 the summation may be carried out 
and one finds A (1) = ( 4 ~ / 3 ) ( 2  - 5 J 2 / 4 )  - ( 4 ~ / 3 ) / 4 .  Thus we write for 0 < y < 1 

4 A ( y )  = 3 ~ ( 1 - 3 ~ / 4 ) .  

Using the definition of S ( y )  as given by (3.6), and the form of + as given by (3.3), we 
have 

The major contribution to this integral comes from small y’, and thus for y >> E we have 

S ( y )  = 2~77E?(y, 0) c0s-l A .  

A closed analytic expression for R(y, 0) is given in appendix 1. Comparison of the 
above integral definition of S ( y ) ,  for y = 0, and the consistency equation for A,  namely 
(3.4),  shows that S(0)  = -4778 In E cos-’ A.  Since in this limit E ? ( y ,  0) = -2 In y ,  if we 
write 

S ( y )  = 2 ~ 7 7 A ( y  + E ,  0 )  cos-’ A ,  

we have a form which has the correct form for y < E and y > E .  
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